Triangulations Loosing Bundles and Weight

نویسندگان

  • Cem Boyaci
  • Hale Erten
  • Alper Üngör
چکیده

We introduce bundle-free triangulations, that are free of large collection of triangles overlapping a circle empty of vertices. We prove that bundle-free Steiner triangulations can be used as an approximate solution for the minimum weight Steiner triangulation problem. We present new algorithms, implementations and experimental study for computing minimum weight Steiner triangulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumerative Properties of Triangulations of Spherical Bundles over S

We give a complete characterization of all possible pairs (f0, f1), where f0 is the number of vertices and f1 is the number of edges, of any simplicial triangulation of an Sk-bundle over S1. The main point is that Kühnel’s triangulations of S2k+1 × S1 and the nonorientable S2k-bundle over S1 are unique among all triangulations of (n − 1)-dimensional homology manifolds with first Betti number no...

متن کامل

N ov 2 00 6 ENUMERATIVE PROPERTIES OF TRIANGULATIONS OF SPHERICAL BUNDLES OVER S 1

We give a complete characterization of all possible pairs (f 0 , f 1), where f 0 is the number of vertices and f 1 is the number of edges, of any sim-plicial triangulation of an S k-bundle over S 1. The main point is that Kühnel's triangulations of S 2k+1 × S 1 and the nonorientable S 2k-bundle over S 1 are unique among all triangulations of (n − 1)-dimensional homology manifolds with first Bet...

متن کامل

Topological Effects on Minimum Weight Steiner Triangulations

We are concerned with a long-standing classical problem in computational geometry: that of finding a minimum weight triangulation of a point set. A minimum weight triangulation is a triangulation which minimizes the sum of the Euclidean lengths of the edges used. Triangulations are very useful objects in the realm of applied computational geometry. By allowing for decompositions of space into s...

متن کامل

On exclusion regions for optimal triangulations

An exclusion region for a triangulation is a region that can be placed around each edge of the triangulation such that the region can not contain points from the set on both sides of the edge. We survey known exclusion regions for several classes of triangulations, including Delaunay, Greedy, and Minimum Weight triangulations. We then show an exclusion region of larger area than was previously ...

متن کامل

Classification of Simplicial Triangulations of Topological Manifolds

In this note we announce theorems which classify simplicial (not necessarily combinatorial) triangulations of a given topological «-manifold M, n > 7 (> 6 if dM = 0 ) , in terms of homotopy classes of lifts of the classifying map r: M —• BTOP for the stable topological tangent bundle of M to a classifying space BTRIn which we introduce below. The (homotopic) fiber of the natural map ƒ: BTRIn —•...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007